

THE FUTURE

WECREATE

TEMPO/GEMS Joint Science Team Workshop 2024 (Hawaii) Characterization of GEMS Level 1B Products based on Inter-Calibration Techniques from a 4.5 Year of Operation EI//HA

Yeeun Lee¹ (yeeunlee@ewha.ac.kr), Myoung-Hwan Ahn^{*1}, Mina Kang¹, Mijin Eo¹, Kyung-jung Moon², Jhoon Kim³

Drominant issues	Level 1B Products				
Prominent issues	IRR (F)	RAD (I)	REF (R)	Effect	
Diffuser N-S dependence	0	X	O (I/F)	Systematic bias along the N-S direction	
Diffuser BTDF	0	X	O (I/F)	Negative bias in IRR	
Diffuser degradation	0	X	O (I/F)	Higher degradation in ~300 nm	
Optics degradation	0	Ο	Х	Systematic decrease in overall signal	
Radiometric cal. coefficient	0	Ο	Х	Systematic bias depending on WV	
Stripping pattern	0	0	Х	Artificial patterns (~2%)	
Stray light	-	0	0	Higher signals @~300 nm	

ΔVZA	V(S)ZA	$\sigma(R_{354nm})$	R ₃₅₄ nm
< 1%	< 40°		> 0.75
	_	< 70/	-
	< 40°	< 3%	> 0.75
	-		-

GEO-GEO (GEMS vs. AMI) onboard twin satellites

Wide spatial & temporal coverage

NIER L1C V2.0 EOSRL 2024

Short Summary & future works

Systematic biases of the GEMS Level 1B compared to GEO & LEO are: -0.5% / **REF:** 7.0% (DCC, 310-380 nm) -1.4% / **REF:** 4.4% (DCC, 320-495 nm) 1% / **REF:** 5.7% (@470 nm)

OMPS	IRR: -8.0% / RAD: -
TROPOMI	IRR: -5.0% / RAD: -
AMI	IRR: - / RAD: 8.2

- products, successfully reducing the N-S dependence.

¹ Ewha Womans University, Republic of Korea ² National Institute of Environment Research Yonsei University, Republic of Korea

<Methodology>

Reference QR. Lee et al. (GRL 2024)

GK-2: Geostationary Korea Multi-Purpose Satellite-2

Ray-matching (GEO-GEO) ✓ Elimination of sun-glint & land pixels \checkmark SZA & VZA < 60° ✓ Spatial homogeneity: Scene STD < 5% $L(\lambda)$: GEMS spectral data $L \otimes f =$ $f(\lambda): AMI SRF$ SRF convolution $\Delta t < 5$ minutes

Spatial average (0.25° or GEMS grid)

The BTDF 2024 update resolves the intensified stripping patterns in Level 2

Some issues remain especially in terms of long-term aspects, including optics & diffuser degradation, and the increased variances along the spatial direction.